Representations of the texture of food in the primate orbitofrontal cortex: neurons responding to viscosity, grittiness, and capsaicin.

نویسندگان

  • Edmund T Rolls
  • Justus V Verhagen
  • Mikiko Kadohisa
چکیده

The primate orbitofrontal cortex (OFC) is a site of convergence from taste, olfactory, and somatosensory cortical areas. We describe a population of single neurons in the macaque OFC that responds to the texture of food in the mouth. Use of oral viscosity stimuli consisting of carboxymethylcellulose (CMC) in the range 1-10,000 centipoise showed that the responses of one subset of these neurons were related to stimulus viscosity. Some of the neurons had increasing responses to increasing viscosity, some had decreasing responses, and some neurons were tuned to a range of viscosities. These neurons are a different population to oral fat-sensitive neurons, in that their responses to fats (e.g., safflower oil), to silicone oil [(Si(CH3)2O)n], and to mineral oil (hydrocarbon) depended on the viscosity of these oils. Thus there is a dissociation between texture channels used to sense viscosity and fat. Some of these viscosity-sensitive single neurons were unimodal (somatosensory; 25%) and some received convergent taste inputs (75%). A second subpopulation of neurons responded to gritty texture (produced by microspheres suspended in CMC). A third subpopulation of neurons responded to capsaicin. These results provide evidence about the information channels used to represent the texture and flavor of food in a part of the brain important in appetitive responses to food and are relevant to understanding the physiological and pathophysiological processes related to food intake, food selection, and the effects of variety of food texture in combination with taste and other inputs that affect food intake.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neuronal representations of stimuli in the mouth: the primate insular taste cortex, orbitofrontal cortex and amygdala.

The responses of 3687 neurons in the macaque primary taste cortex in the insula/frontal operculum, orbitofrontal cortex (OFC) and amygdala to oral sensory stimuli reveals principles of representation in these areas. Information about the taste, texture of what is in the mouth (viscosity, fat texture and grittiness, which reflect somatosensory inputs), temperature and capsaicin is represented in...

متن کامل

Primate insular/opercular taste cortex: neuronal representations of the viscosity, fat texture, grittiness, temperature, and taste of foods.

It is shown that the primate primary taste cortex represents not only taste but also information about many nontaste properties of oral stimuli. Of 1,122 macaque anterior insular/frontal opercular neurons recorded, 62 (5.5%) responded to oral stimuli. Of the orally responsive neurons, some (53%) represented the viscosity, tested using carboxymethyl-cellulose in the range 1-10,000 cP. Other neur...

متن کامل

Taste, olfactory, and food texture processing in the brain, and the control of food intake.

Complementary neurophysiological recordings in macaques and functional neuroimaging in humans show that the primary taste cortex in the rostral insula and adjoining frontal operculum provides separate and combined representations of the taste, temperature, and texture (including viscosity and fat texture) of food in the mouth independently of hunger and thus of reward value and pleasantness. On...

متن کامل

Taste and related systems in primates including humans.

The cortical processing of taste and related sensory inputs is being investigated at the neuronal level in macaques to help understand the operation of these cortical areas in humans. The primary taste cortex of macaques in the rostral insula and adjoining frontal operculum contains neurons tuned to different tastes including umami (Scott et al., 1986; Yaxley et al., 1990; Baylis and Rolls, 199...

متن کامل

Brain mechanisms underlying flavour and appetite.

Complementary neurophysiological recordings in macaques and functional neuroimaging in humans show that the primary taste cortex in the rostral insula and adjoining frontal operculum provides separate and combined representations of the taste, temperature and texture (including viscosity and fat texture) of food in the mouth independently of hunger and thus of reward value and pleasantness. One...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 90 6  شماره 

صفحات  -

تاریخ انتشار 2003